Article : Transcriptome analysis of the uterovaginal junction

Article : Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens

Un nouvel article de l'équipe !

Avec la participation de Pascal Mermillod

ABSTRACT

Sperm storage tubules (SSTs) in the uterovaginal junction (UVJ) of the oviduct are major sites of sperm storage after artificial insemination or mating. Female birds may regulate sperm motility in the UVJ. Heat stress can decrease the reproductive ability of broiler breeder hens. However, its effects on UVJ remain unclear. Changes in gene expression aid in understanding heat stress-affected molecular mechanisms. Herein, we wanted to conduct a comparative transcriptomic analysis to identify the differentially expressed genes (DEGs) in the UVJ of breeder hens under thermoneutral (23°C) and heat stress (36°C for 6 h) conditions. The results indicated that cloacal temperatures and respiratory rates were significantly increased in heat-stressed breeder hens (P < 0.05). Total RNA was extracted from the hen UVJ tissues containing SSTs after heat exposure. Transcriptome analysis identified 561 DEGs, including 181 upregulated DEGs containing heat shock protein (HSP) transcripts and 380 downregulated DEGs containing immune-related genes, such as interleukin 4-induced 1, radical S-adenosyl methionine domain containing 2, and 2′-5′-oligoadenylate synthetase like, in heat-stressed hens. Gene Ontology analysis revealed the significantly enriched terms involving HSPs. Kyoto Encyclopedia of Genes and Genomes analysis identified 9 significant pathways, including the protein processing in endoplasmic reticulum (11 genes including HSPs), neuroactive ligand–receptor interaction (13 genes including luteinizing hormone/choriogonadotropin receptor), biosynthesis of amino acids (4 genes including tyrosine aminotransferase), ferroptosis (3 genes including heme oxygenase 1), and nitrogen metabolism (carbonic anhydrase [CA]-12 and CA6) pathways. Protein–protein interaction network analysis of DEGs revealed 2 large networks, one containing upregulated HSPs and the other containing downregulated interferon-stimulating genes. Overall, heat stress inhibits innate immunity in the UVJ tissues of broiler chickens, and heat-stressed chickens protect their cells by increasing the expression levels of HSPs. The identified genes are potential candidates for further exploration of the UVJ in heat-stressed hens. The identified molecular pathways and networks increase our understanding of the sperm storage reservoirs (UVJ containing SSTs) within the reproductive tract and may be used to prevent heat stress-induced fertility loss in breeder hens.